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ABSTRACT 

Airport operational data are necessary for aviation decision-makers to quantitatively prepare airport 
master plans and fairly distribute national funds throughout the country. These data have other important 
applications, such as safety and security applications. Interestingly, most airports (i.e., typically general 
aviation airports) do not have control towers or staff to document the aircraft operations in their airport. 
That considered, many attempts have been made to automatically record the operations using radio, 
acoustics, and ADS-B technologies. While these methods come with some advantages, they cannot 
accurately monitor aircraft operations at non-towered airports due to technological and commercial 
shortcomings. Therefore, this project attempts to develop intelligent cameras for performing operation 
count and recognition by using machine learning techniques. The proposed method addresses the issues 
that existed with the other methods. A camera system is a passive system that does not require 
cooperative aircraft. Moreover, our data analysis has shown that the proposed vision-based system holds 
the promise of an accurate system regarding both counting and recognizing the aircraft operations at non-
towered airports during busy traffic times in those airports. 
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EXECUTIVE SUMMARY 

There are many non-towered airports in the United States. These airports are important for the community 
since they provide vital services such as aerial firefighting, aeromedical flights, and law enforcement, 
besides corporate flights. In order to plan for the future development of these airports, aviation planners 
need the number of aircraft operations as well as the fleet mix information at these non-towered airports. 
Based on the Federal Aviation Administration, aircraft operations are classified into departure operations, 
landing operations, and touch-and-go operations. The touch-and-go operations are actually a more 
common type of operation at non-towered general aviation airports compared with major airports hosting 
airliners. As a result, having the total number of operations at non-towered airports is crucial for making 
managerial decisions at the airport and state levels. Continuous airport maintenance is the only way to 
keep these transportation corridors operable for the community. However, the associated national budgets 
should be fairly distributed, considering the airport operation volume throughout the year. 

This paper reports the conducted research for developing an accurate approach for tallying airport-level 
aircraft operations using machine vision. The existing systems are comprised of automated acoustical 
counters, Automatic Dependent Surveillance–Broadcast (ADS-B)-based counters (a.k.a. transponder-
based counters), radio click counters (a.k.a. general audio recording device), and security trail cameras. 
Nonetheless, the above-mentioned systems are not able to accurately collect the operational data at non-
towered airports. ADS-B needs equipped aviation fleet with transponders. Acoustical counters cannot 
count landing operations since the aircraft sound is not noticeable during landings. The radio system also 
may lead to inaccurate counts. On the other hand, a passive camera-based counting system is proposed to 
overcome the challenges that exist with the use of these systems.  

In order to develop a machine vision system for aircraft operation monitoring, we explored different 
camera layouts and various machine learning algorithms. Two camera layouts are proposed for full 
coverage of the aircraft operations at airports. The proposed camera layouts are determined with 
consideration of the possible airport configurations. The necessary algorithms to empower the camera 
footage with machine vision include aircraft detection, aircraft tracking, aircraft tail number detection, 
and aircraft tail number recognition. We used machine learning and deep learning methods to build the 
intelligent detection models to automatically perform the abovementioned tasks.  

The feasibility of the developed system is tested on video data collected from general aviation airports 
within the state of Utah. Our team took the necessary safety measures while collecting the aircraft 
operational data using digital cameras. The collected data include different weather conditions (sunny, 
cloudy, and snowy) and different illumination conditions. The selected test locations allowed us to have a 
wide range of civil aviation fleets. Also, different airport configurations (i.e., runway and taxiway 
arrangement) are considered when the test locations are selected. The evaluation of the proposed system 
has shown that a vision-based system can provide accurate airport operational data. The proposed system 
is a good alternative to the existing systems and also provides aviation planners with a complementary 
tool for increasing the accuracy of the existing deployed counters in their studying airport. 
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1. INTRODUCTION 

1.1  Introduction 

Domestic airport operation volume and fleet mix information are essential for the preparation of airport 
master plans and appropriate allocation of state and federal budgets [1]. Furthermore, this information 
helps researchers in environmental studies regarding the noise emission and pollution related to aircraft 
operations [2], [3]. 

Awareness of airport operations data is a critical managerial tool used by planners in different sectors for 
a wide range of applications. The following briefly discusses how different entities use the information on 
airport-level operations counts. We divided applications of these counts into three groups of entities: 
public sector, private sector, and the airport itself, which could be both. 

Public: State governments and the FAA can leverage accurate airport operations counts to make sound 
investment decisions [3]. In fact, any funding request for a capital improvement project needs to be 
justified by providing reliable information about the airport’s operations counts. Moreover, these data are 
used as a basis for assessing airport capacity needs, determining staffing requirements, and allocating 
budgets for airport development projects [4]. The operations counts are also crucial to environmental 
studies, whose findings might advise against certain airport development projects. Actually, it is the 
number of aircraft activities that determine whether noise and air quality studies are needed for an airport 
development project (the FAA Order 5050.4) [5]. Additionally, flight safety could be compromised if 
FAA used underestimated operations counts for infrastructure planning, such as control tower 
justification as well as evaluation of dangerous obstructions to flying aircraft (Figure 1.1) [6]. Lastly, 
operations count data are essential elements of economic impact statements that eventually show the 
airport’s financial gain considering its costs. 

 

Figure 1.1  Examples of the obstructions to flying aircraft 
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Private: Private businesses located in the vicinity of an airport are often dependent on airport operations 
[3]. The private businesses located on an airport or located around an airport are related to airport 
operations. An increase in airport operations impacts these private businesses by causing demand for on-
airport services, such as maintenance services, provided by fixed base operators (FBOs). In addition, it 
causes greater demand for off-airport services, such as hotels and fuel distribution systems [7]. Thus, 
banks and private investors can use operations counts when assessing loan requests for (non)towered 
airport businesses. 

Airport: Airport managers are interested in having accurate operations counts for many reasons, such as 
determining the safety levels and knowing the demand for the service they provide [8]. Lau [9] states that 
the former solidifies the decisions made for procuring further insurance and justifying the addition of a 
parallel taxiway. The latter assists airport managers in determining fueling storage requirements as well as 
space requirements for terminal buildings (Figure 1.2) [10]. Furthermore, the volume of the aircraft 
operations is a factor in measuring airport performance. Lastly, the counts will directly determine whether 
noise mitigation procedures should be implemented in the airport [11]. 

 

Figure 1.2  A general aviation airport layout (Image from Google Earth) 
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1.2  Current Gap in Study 

Detailed information about airport operations is typically documented by air traffic control (ATC) towers 
(Figure 1.3). However, more than 97% of U.S. airports do not have control towers [12]. That said, many 
attempts for aircraft operation detection have been proposed, including transponder-based methods, 
acoustical counters, and radio-based operation counters. Nevertheless, they have limited accuracy. Also, 
the current aviation fleet is not completely equipped with transponders to be counted by transponder-
based counters.  

 

 

 

Figure 1.3  Air traffic control tower 

On the other hand, computer vision is an alternative approach, which is shown to be an effective solution 
for many related engineering tasks such as infrastructure modeling [13, 14] and inspecting [15]. The 
aviation sector needs a comprehensive system capable of counting all-type operations (departures and 
landings) for various airport layouts. We address this need by developing an automatic video-based air 
traffic surveillance system for counting and recognizing general aviation aircraft operations, which 
account for the vast majority of air traffic at non-towered airports. Moreover, an aircraft can be identified 
via its registration number, also known as the tail number, which must be printed on the body of the 
aircraft in accordance with the International Civil Aviation Organization (ICAO) regulations [16]. 
Therefore, a computer vision-based approach represents an economical alternative that can facilitate 
aircraft identification for record-keeping at airports. 
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1.3  Machine Vision  

Developing a machine vision system for airport aircraft operation monitoring demands detailed 
considerations. It requires an appropriate camera layout that would avoid failures in capturing the 
operations or overcounting them. In addition, general aviation aircraft are typically small in size, and their 
recognition requires robust algorithms. 

Furthermore, it is important to impose a limit on computation time to enable a real-time system for two 
reasons. First, it helps avoid data congestion and information delay that inevitably occurs with any non-
real-time system. Second, it can be used to signalize flight clearance for pilots approaching the airport and 
thereby reduce runway incursion risk, which is a major safety concern (e.g., more than 1,511 runway 
incursions were reported in the last year alone [17]). 

The proposed monitoring system consists of four machine learning models in order to accurately perform 
the following tasks (as shown in Figure 1.4): 

1. Aircraft Detection (green box in Figure 1.4) 
2. Aircraft Tracking (blue arrow in Figure 1.4) 
3. Aircraft Tail Number Detection (yellow box in Figure 1.4) 
4. Aircraft Tail Number Recognition (red box in Figure 1.4) 

 

 

 

  

Figure 1.4 Main tasks performed by using the developed machine learning models 
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2. BACKGROUND 

In this section, we review the literature regarding aircraft operation counting technologies and the vision-
based methods for aircraft detection.  

2.1  Aircraft Operation Counting Technologies 

Acoustic, radio, and satellite-based methods are used to measure aircraft operations at non-towered 
airports. However, acoustic-based [18] and radio-based [19] (i.e., general audio recording device 
[GARD]) systems are incapable of recognizing the identity of the aircraft. Also, the acoustic technology 
can only detect take-off operations (i.e., departures) and misses the landing and touch-and-go operations. 
Additionally, as shown in Figure 2.1, airports with shared Unicom (radio) frequency are prone to 
inaccurate counts if the GARD technology is used. 

 

Figure 2.1  Airports with a shared Unicom frequency 

Mott [20] proposed a satellite-based approach to recognize airport flight activities by encoding the signal 
transmitted by a transponder carried by aircraft. This method utilizes the Automatic Dependent 
Surveillance-Broadcast (ADS-B) system. There are several transponder types based on the signal they can 
transmit. Mode A/C and Mode S aircraft transponder signals are common for civilian use. Only in Mode 
S signals, each aircraft is assigned a fixed ICAO 24-bit address that can pair with aircraft registration in 
the FAA database (the identity of the aircraft) [21].  
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Nevertheless, this system is currently not sufficient because of the low equipage rate of the general 
aviation fleet with transponders (only about 75% [22]). In addition, the transponders of most of the 
equipped general aviation fleet (approximately 84%) cannot transmit Mode S signal that has aircraft 
identity information [23]. As a result, this system is not able to identify a large portion of the currently 
equipped aviation fleet. Besides, the dependency of this system’s performance on aircraft cooperation 
reduces the reliability of using it. A vision-based system can properly solve this issue as it is not limited 
to cooperative aircraft.  

Another important consideration that differentiates a vision-based aircraft detection system is that 
information about the airfield can be used to signalize flight clearance for pilots who approach the airport 
aerodrome. It would lessen runway incursion risk, which is a major safety issue (e.g., more than 1,511 
runway incursions were reported in 2021 [17]). Runway incursion examples are shown in Figure 2.2. 

 

 

Figure 2.2  Runway incursion examples 

2.2  Vision-based Aircraft Detection 

The visual source of information for monitoring aprons has been typically two types of cameras: 1. pan-
tilt-zoom (PTZ) and 2. closed-circuit television (CCTV) cameras that are installed in the airside area 
(Figure 2.3). Thirde et al. [24] developed a system with a multi-camera configuration to recognize the 
activities of the vehicles and personnel to monitor airplane servicing operations at the apron. Similarly, 
Koutsia et al. [25] use foreground subtraction and data fusion methods in order to build a network for 
activity tracking with PTZ and CCTV cameras using a central server. However, foreground subtraction 
alone is not sufficient to recognize and distinguish the activities of aircraft and service vehicles in general 
aviation airports because they are significantly small. A visual analysis of fueling and boarding activities 
can calculate the required time for the aircraft push-back process [26]. 
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Figure 2.3  Pan-tilt-zoom camera for aircraft operation monitoring in apron area 

Bloisi et al. [27] combined the theory of particle filter-based video-tracking (an algorithmic complex 
method) and data from radar to enhance the accuracy of the airplane positioning in the parking and apron 
zones. In the same way, a system named INTERVUSE [28] fuses the data retrieved from radar, cameras, 
and preplanned flights in a central server to cover the blind spots, thereby assisting the staff inside the air 
traffic control tower in spotting the operation and movements of the aircraft in airport. The sensors of 
these two technologies (camera and radar) work together and interchangeably to fill and cover the 
existing gaps of each individual technology. 

Moreover, Advanced Surface Movement Guidance and Control Systems (A-SMGCS) that use cameras 
usually use CCTV cameras that are installed at high levels. By using these installed cameras in the 
airfield, Besada et al. [29] used blob analysis and foreground subtraction algorithm in order to localize 
and track the airplanes on the ground in the airport. Zhang et al. [30] used convolutional features 
calculated by deep learning methods for finding and tracking aircraft in the airport on the surface of the 
airfield. Thai et al. [31] improved these high (towered)-level camera systems by implementing deep 
neural network-based techniques for tracking the aircraft (Figure 2.4).  
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Figure 2.4  Aircraft detection from the towered level cameras [31] 

Furthermore, some research was also conducted to identify tail numbers of the aircraft in the video 
footage from primary towered airports. Besada et. al [32] and Vidakis and Kosmopoulos [33] published 
technical papers to demonstrate the results of their research work developed for A-SMGCS to help staff 
inside the air traffic control towers detect and recognize the tail numbers of slow-moving grounded 
airliners in the apron or towers. 

Since general aviation aircraft are smaller in size and have more challenging tail numbers compared with 
airliners, the aforementioned algorithms would have issues identifying the general aviation aircraft at non-
towered airports. Therefore, in this project, we proposed vision-based methods for aircraft detection [34], 
aircraft tail number detection [35], aircraft identification [36], and aircraft operation recognition and count 
[37, 38]. 
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3. METHODOLOGY 

Four main tasks that are needed to be automated are: 

1. Aircraft Detection  
2. Aircraft Tracking  
3. Aircraft Tail Number Detection  
4. Aircraft Tail Number Recognition  

Therefore, in this section, we explain how the necessary algorithms are constructed to perform the 
abovementioned tasks in an automatic fashion.  

3.1  Aircraft Detection  

For the task of aircraft detection, we tested both deep learning and machine learning methods. The former 
is tested for cases where there are several datasets available. The latter is tested for cases where there are 
few available datasets. 

3.1.1  YOLO and SSD 

YOLO and SSD are abbreviations for “You Only Look Once” and “Single Shot Detector.” They are two 
modern deep neural network object recognition methods in images known for their raised speed of 
detection in comparison with their counterparts like region proposal-based networks. 

In YOLO, which is a unified deep neural network for object detection, a regression solution is designed 
for the problem of localizing and classifying bounding boxes. Therefore, YOLO’s increased detection 
speed results from applying only a single neural network to the input image to compute the spatial 
location of the object and its class probabilities. The latest version of YOLO, referred to as YOLOv4 [39], 
augmented new features to its previous network mainly to improve average precision while maintaining 
detection speed.  

Despite the accuracy performance advantage over its previous versions, YOLOv4 still depends on 
powerful conventional GPU units for both training custom object detection models and real-time 
inference acceleration. To assist with YOLO’s inference detection speed to be executed on embedded 
vision on single-board computers (SBC), Redmon et al. [40] proposed a variation of the YOLO 
architecture, tiny YOLO, which is much faster than the original YOLO at the cost of the lower recall.  

SSD leverages multiple feature maps to enable accurate multi-scale object detection. To extract features 
in the deep network at multiple scales, SSD does not use the fully connected layers in its base network 
(i.e., VGG16) but replaces them with auxiliary networks named convolutional layers that have varying 
sizes. The absence of fully connected layers in the SSD network is one of the critical differences between 
YOLO and SSD architectures, making SSD faster than YOLO. Figure 3.1 shows the architecture of a 
typical object detection model that is based on deep neural networks. 
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Figure 3.1  Architecture of a deep neural network for object detection 

We used the three discussed deep-based object detection models to verify the Haar cascade classifier 
performance for the detection of the aircraft. YOLO-v4, YOLO-tiny-v4, and SSD are the three models, 
and their pre-trained models on the COCO dataset for the aircraft object are implemented in the Python 
platform using the OpenCV deep neural networks module. That said, only the airplane object, which is 
object category number five in the COCO dataset, is used for detection. 

In order to decrease the high number of false-positive detections while maintaining a good portion of true-
positive detections, a minimum of 30% was defined as their detection confidence threshold. The non-
maximum suppression (NMS) function, available in OpenCV (which is an open source platform) for deep 
detectors, is activated with a threshold. This threshold was set at 0.5 to minimize multiple detections over 
a single aircraft (false positive detections) at each video frame in the program. 

3.2  Aircraft Tracking  

Once the aircraft is detected in our video footage, the expert system tracks the aircraft until it is out of the 
camera’s field of view (FoV). This task is done using an object tracker. As Figure 3.2 illustrates, the 
detection bounding box is updated in every new video frame in order to contain the aircraft image in that 
video frame. 

In order to lessen the computational intensity of the system, the aircraft detection task is preceded by a 
motion detection model and is succeeded by an object tracker. Both motion detection and object tracker 
models are much less computationally intensive, thereby decreasing the system processing time. During 
the aircraft tracking process, certain information such as aircraft tail number is extracted from the video 
footages. Also, the created trajectory is analyzed to determine the type of the operation (i.e., departure, 
landing, touch-and-go) 



11 
 

 

Figure 3.2  System flowchart 

Correlation-based object trackers are used in this project. We did not use deep learning-based trackers 
because they are very computationally intense. As a result, the use of such trackers in any intelligent 
system would require significant computational power.  

We tested several correlation-based object trackers as follows: 

• __BOOSTING Tracker 

• __MIL Tracker 

• __KCF Tracker 

• __TLD Tracker 

• __MEDIANFLOW Tracker 

• __MOSSE tracker 

• __CSRT tracker 

The performance of the first two object trackers for tracking general aviation aircraft in the recorded 
video footages was better than KCF and MEDIANFLOW. However, MOSSE and CSRT were the best in 
terms of accuracy and consistency in tracking the aircraft after it is detected via the object detection 
network. MOSSE stands for Minimum Output Sum of Squared Error, and CSRT stands for Channel and 
Spatial Reliability Tracking. MOSSE tracker is used in cases where the size of the aircraft bounding box 
does not change significantly during the tracking process. On the other hand, CSRT uses geometric 
invariant features for updating the location of the object, so it is a better candidate for cases where the 
object size changes significantly. Thus, we used the CSRT tracker when the bounding box is expected to 
change considerably.  
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3.3  Aircraft Tail Number Detection and Recognition 

This section explains how we use the output of the general aviation aircraft detection algorithms and 
scene text detection algorithms to detect the aircraft tail number. We developed a camera layout for 
recording video footage from aircraft operations at general aviation non-towered airports. In this camera 
layout, two cameras are placed at each end of the runway considering the runway safety area. Each 
camera is pointed toward the runway ends. With this configuration and setup, the cameras record the 
landing aircraft off the runway surface level while getting close to the airport.  

The same cameras will record the departing aircraft on the runway surface level since aircraft pilots 
usually go from the end of the runway to ensure a safety margin for a possible stop on the runway in case 
of engine failure or rejected take-off. Figure 3.3 shows a schematic display of the placement of the 
camera system and the cameras’ FoV at one end of the runway. 

 

 

Figure 3.3  Camera system positioning at one end of the airport and its field of view 

Figure 3.4 exhibits the flowchart of the system that organized the computer vision framework for aircraft 
operation count, aircraft activity recognition, and aircraft identification. In the first step, the system 
recognizes any motions by subtracting two consecutive video frames and analyzing the size of the 
resulted black and white blobs. These blobs could result from the motions of airport ground vehicles, 
airport personnel, nearby highway traffic, construction equipment, and animals (e.g., birds). Next, we 
utilize object detection models to detect the presence of aircraft among all possible moving objects in the 
video footage and very fast correlation-based object trackers, MOSSE and CSRT, to find the location of 
the aircraft in the rest of the video frames. The trajectory that is built by using the object tracker is further 
processed to count and recognize the type of aircraft activity (i.e., departure operation or landing 
operation). 
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Figure 3.4  System flowchart during the flight operation time window 

For detection and localization of the aircraft tail number (which is yellow-color-coded in Figure 3.4), it is 
best to search over the aircraft bounding box (which is red-color-coded) instead of the entire image (video 
frame) plane. In this way, we increment the accuracy of the tail number detection task by decreasing the 
size of the search space. Subsequently, the algorithms designed for scene text detection localize and 
extract the tail number image to be used as an input for the text recognition algorithm.  

The aircraft’s very high speed, especially during landing operations, can cause a blurry effect in video 
frames while recording the operation. That considered, in order to improve the quality of the images, we 
exert edge-preserving and contrast adjustment to the detected aircraft image box and the detected tail 
number image box.  

A bilateral filter is applied to highlight the edges in the aircraft bounding box before tail number 
detection. A bilateral filter considers the weight of both the Euclidian distance of the image pixels and the 
color intensity differences by applying a Gaussian distribution while substituting the intensity value of an 
image pixel. The sharper edges are essential for the task of tail number detection.  

Once the tail number is detected, we use histogram equalization to reinforce the contrast of the tail 
number characters compared with the background. Histogram equalization is an image processing 
technique to spread the intensity of image pixels by extending the histogram diagram and adjusting the 
contrast of the image. It is essential to apply the histogram equalization only to the tail number image box 
because it could potentially magnify the noise if devoted to the whole aircraft image box. 

3.3.1  Tail Number Detection 

Here we test two text detection techniques to evaluate their accuracy for applications with limited 
computation resources, which may be a problem in many general aviation airports, such as small local 
non-towered airports, general aviation airports, and backcountry airstrips. For that purpose, we propose a 
feature-based tail number detector and compare it with a text detector with a deep neural network-based 
backbone.  

The feature-based detector operates based on an object detection technique named Haar cascade. As for 
the deep-based detector, we selected the TextBoxes algorithm developed by Liao et al. [41]. The 
TextBoxes model trained on the SynthText dataset is utilized for the purpose of comparison. The 
following illustrates how we construct the feature-based tail number detector. 
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In the United States, Federal Aviation Administration refers to tail numbers as the N-Number of the 
aircraft since registration numbers should begin with the letter “N” – which is a letter code specifically for 
the aviation fleet registered in the United States. Therefore, when the “N” character is found, the height of 
the tail number window is known to be the same size as the bounding box height of the detected “N.” As 
Figure 3.5 indicates, the width of this window should be an extended width of the “N” bounding box.  

Through experiments, it is demonstrated that extending the “N” bounding box width to four times the 
longer width accurately bounds the length of the actual tail number. Accordingly, we constructed a 
feature-based scene text detector to recognize the letter “N” in the images recorded from aircraft by 
means of the Haar cascade classifier technique [42]. 

 

 

  

Figure 3.5  “N” Detection 

Haar Cascade Classifier: Haar cascade is known for its fast detection performance and comparable 
accuracy compared with deep neural networks. In this method, a rectangular window looks for the aircraft 
object by searching over the image plane using two mechanisms: 1) moving the window by a predefined 
number of pixels to fully cover the image; 2) resizing the original image for a few times (scale pyramid) 
to permit the multi-scale detection. In the next step, each candidate window will be classified into two 
classes: a positive class and a negative class, through several rejection/acceptance stages (Figure 3.6). 
This mechanism increases the speed of the process of detecting an object and also decreases the 
computational intensity because just a few primitive stages can remove the negative windows. A large 
number of weak classifiers build the final robust classifier at each stage, i.e.,  

Figure 3.6  Haar cascade classifier stages 
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0,                                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
,                                                                 (1) 

where 𝑥𝑥 is a window of the original image, ℎ(𝑥𝑥) is the final robust classifier, ℎ𝑗𝑗(𝑥𝑥) is a Haar feature-
based weak classifier, 𝛼𝛼𝑗𝑗 is the weight of each classifier, and 𝑇𝑇 is the total number of weak classifiers in 
the observed stage. Note that the final robust classifier of the resulting stage specifies if the window can 
encompass the object of interest or not. Windows that pass all stage criteria are known to encompass the 
object of interest (positive class). In this scene text detection problem, we define an image of the character 
of “N” as the positive class and any other image window as the negative class. 

Haar Feature-based Weak Classifiers: A Haar feature and a threshold construct a Haar feature-based 
weak classifier. As Figure 3.7 demonstrates, Haar features are rectangular image filters with black and 
white small (sub-)rectangles adjacent to each other. The convolution operation of a Haar feature to the 
image window compared to a predetermined threshold indicates the value of ℎ𝑗𝑗(𝑥𝑥) in the final robust 
classifier formula.  

ℎ𝑗𝑗(𝑥𝑥) = �
1,   𝑖𝑖𝑖𝑖 𝑝𝑝𝑗𝑗𝑖𝑖𝑗𝑗(𝑥𝑥) < 𝑝𝑝𝑗𝑗𝜃𝜃𝑗𝑗
0,                𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

,                                                                                               (2) 

where 𝑝𝑝𝑗𝑗 is the polarity coefficient, 𝑖𝑖𝑗𝑗 a Haar-like feature, and 𝜃𝜃𝑗𝑗 is the predetermined threshold. The value 
of 1 means that the image subwindow contains the object based on the Haar feature-based weak classifier 
(i.e., ℎ𝑗𝑗(𝑥𝑥)). These classifiers are known as weak classifiers because a single classifier cannot accurately 
detect the associated subwindow. 

Based on a theory, the abovementioned convolution operation is simply the subtraction of the value of the 
pixels that coincide with the Haar feature black sub-rectangles from the value of the image pixels 
overlapped with the Haar feature white sub-rectangles. Integral image representation formulated by Viola 
and Jones (31) enhances the computation efficiency of the Haar cascade approach even more by easing the 
Haar feature and image subwindow convolution operation.  

 

 

Figure 3.7  Haar-like features 
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The optimal distribution of the weak classifiers is important to building the ultimate robust classifiers at 
each stage. For instance, a 24x24 image size has 162,336 (upright) Haar-like features, more accurately 
86,400 edge Haar-like features, 55,200 line Haar-like features, and 20,736 four-rectangle Haar-like 
features. 

Training the Classifiers: An Adaboost algorithm is leveraged to find the best selection and value of the 
Haar cascade classifier parameters explained in the last two subsections. The aim is to find the best 
classification, considering precision and recall by raising the hit rate (i.e., true positive detection rate) and 
reducing the false detection rate at each stage. While a minimum hit rate of 0.999 is suggested by Lienhart 
et al. [43], we selected 0.997 as any higher value would significantly lower the speed of the training 
process. As for the maximum false alarm rate, a value of 0.4 is known to be efficient through experiment.  

The training process is conducted in the OpenCV object detection module using Python. Regarding the 
hyperparameters related to the degenerate trees of Haar-like features (the weak classifiers), we utilized a 
fixed weight trim rate (0.95), maximal weak tree depth of 1, and maximal weak trees per stage of 100, 
which are the predefined values determined by the computer trainer application. We used a Gentle 
Adaboost to define the final form of the degenerate trees of Haar feature-based weak classifiers. Gentle 
Adaboost typically boosts the performance of the generalization in algorithms. Lastly, a grid search is 
performed over three maximum number of stages (i.e., 10, 15, and 20) and two sample window sizes (i.e., 
20x20 and 24x24).  

There are 248 positive image samples and 415 negative image samples leveraged as the data for classifier 
training, which is downloaded from random images extracted from the web. A validation dataset of 10 
aircraft operations video footage with 100 digital frames verified the use of the model with a 24x24 
window sizes for higher accuracy of “N” (or aircraft registration/tail number) detection rate. The optimum 
model continued to be trained for 15 stages and terminated the training process after getting close to the 
overall false alarm rate criteria, which is specified by max_false_alarm_rate and number_of_stages. This 
model is also examined with its deep neural network counterpart (named TextBoxes), which is further 
tested in the next section. 

Implementation: Haar cascade classifiers, although efficient, often result in moderate to high false-
positive object detection rates. Because of that, we extracted those false detections that possess fewer 
overlapping detected bounding boxes (i.e., neighbor bounding boxes) than an associated threshold (i.e., 
minimum neighbors number). Nevertheless, the experiments demonstrated that there would still 
occasionally be several detections over a single object of interest (i.e., aircraft registration/tail number). 
Because of that matter, the detections are further repressed by an algorithm named refinement filter, 
illustrated in Figure 3.8. 
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Figure 3.8  The refinement filter algorithm 

Consequently, the best detections are kept. The CRNN algorithm will have the detected image of the 
aircraft tail number as the network input and digitalize it to an editable format. The product can extract 
aircraft information, such as the aircraft type, engine model, manufacturing year, and weight, from the 
published FAA registration databases. 

3.3.2  Tail Number Recognition 

We employ a convolutional recurrent neural network (CRNN) [44], a modern deep learning algorithm 
known for its accuracy and speed. This model combines a deep convolutional neural network and a 
recurrent neural network into an end-to-end character recognition neural network model. There is no 
constraint for the length of the tail-number-like object that the CRNN model can recognize. This feature 
is beneficial for the task of tail number recognition because the length of the tail number can change from 
three letters to six letters (according to the ICAO grammar for tail numbers).  

The feature maps in the convolutional layer of the CRNN network relate each receptive field (i.e., sliding 
bounding box in the input image demonstrated in Figure 3.9) to a feature sequence, which will be later 
classified into one of the predefined labels (i.e., uppercase English alphabets, numbers, and a ‘blank’). 
The used overlapping sliding window (Figure 3.9), instead of connected component-based techniques 
(e.g., Tesseract OCR library), is primarily helpful for our problem with tail numbers that are haphazardly 
arranged (tail numbers that have overlapping characters). Lastly, a transcription layer implements the 
connectionist temporal classification (CTC) prediction module explained in [45] to eliminate the repeated 
labels over single characters and the outputs like the ‘blank’ windows’ outputs. Consequently, the output 
of the CRNN optical character recognition model would be sensitive and need the accurate localization of 
the target sequence (i.e., aircraft registration number/tail number) in the input image.  
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Figure 3.9  Each vector in the feature sequence of the CRNN network is associated with a receptive field. 
A BLSTM (bidirectional long short-term memory) network predicts a label distribution for 
each vector (receptive field). 

In the previous section, we explained how we detected the input for the aircraft tail number recognition 
module from the video footage data from operating aircraft in an airport environment. It is noteworthy that, 
in this project, we used a CRNN model constructed by leveraging two popular text recognition datasets 
named MJSynth and SynthText. These datasets have synthetic images that together enjoy 14.4 M word box 
samples. MJSynth and SynthText are both suitable text recognition datasets for tail number recognition 
since they have the needed diversity in their fonts, borders, shadows, background colorings, and projective 
distortions processed when building these datasets [46].  
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4. DATA COLLECTIONS  

Several data collections have been conducted to find the optimal setting for video capturing configuration 
as well as the localization of the cameras in the two configured layouts in the previous section. 
Furthermore, the collected data are utilized to evaluate the accuracy and feasibility of the system. The test 
locations that we visited are five public-use general aviation airports in Utah: 

1. Bountiful Airport  

2. Brigham City Municipal Airport  

3. Spanish Fork Airport 

4. Heber City Airport 

5. Logan-Cache Airport 

The following figures demonstrate the general aviation airports’ test locations and layouts. The order of 
these follow the above list. 

 

                                  Bountiful Airport                                          Brigham City Municipal Airport 
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Spanish Fork Airport 

                                    Heber City Airport                                                           Logan-Cache Airport 

Figure 4.1  Test location airports in Utah (Images from Google Earth) 
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Spanish Fork Airport and Brigham City Municipal Airport have a more mixed aviation fleet than the 
other airports. A wide range of aircraft types, from general aviation aircraft to large airplanes, are 
observed during data collection. This fact produces another challenge for detection of the aircraft 
operation because the broader range of aircraft leads to a more comprehensive range of aircraft operation 
speed, acceleration, and landing approach. This dataset is useful for us to customize the software for such 
general aviation airports.  

The selection of the Logan-Cache Airport was originally intended to assess the system performance for 
more complex taxiway-runway arrangement cases. As the plots demonstrate, the operations at this airport 
include three runway lanes with the associated taxiway and taxiway-runway passages. The strategic 
passages that cover the majority of the activities in these airports can be detected and examined for the 
best placement of the cameras.  

As Figure 4.1 demonstrates, a fine combination of runway sizes can be observed in the test locations. The 
size of the airports influences the mix of the operating aircraft in the airport as well. That considered, a 
very good mix regarding aircraft types has been recorded in the conducted data collection sessions. For 
instance, Bountiful Airport enjoys high general aviation aircraft traffic. The challenges that existed with 
general aviation aircraft detection and recognition relate to their small sizes and irregular tail number 
shapes in comparison with large airplanes.  

The most jet traffic among our test locations can be seen at Heber Valley Airport. This type of aircraft 
tends to fly (depart or land) at a much higher speed and acceleration in comparison with the other types of 
aircraft. The higher operation speed raises the possibility of a blurry effect in the captured video frames. 
As a result, a higher rate of video data capturing might be crucial for accurate aircraft operation 
recognition at the abovementioned airports.  

4.1  Camera Layout Plans 

After carefully observing the various airport layout plans and interacting with local airport authorities and 
operators, two possible camera layouts for small general aviation airports are proposed. Each of these 
layouts has a different data recording configuration, setup, and requirements. A video-based air traffic 
surveillance system aims to capture all flight operations in an airport. Aircraft pilots operate from the end 
of the runway to have a safety margin for a stop on the runway in case of an engine failure/rejected take-
off.  

Therefore, two ends of the airport runway are determined as strategic locations for camera placements in 
layout 1 to record aircraft operations (Figure 4.2, top). As explained and as shown in Figure 5 (bottom 
right), departure operations, which begin from either end A or end B, are recorded on the level of the 
ground in the demonstrated field of view (FoV). Accordingly, the arrival operations are captured while 
the aircraft lands and is off the ground level (Figure 4.2, bottom left). 
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Figure 4.2  Top: Camera deployment in layout 1; Bottom: Field of view in Camera A for an arrival 
operation (left) and a departure operation (right) on the runway area 

While camera layout 1 can have all aircraft operations, consisting of touch-and-go operations, some 
aircraft operations might not be visually identifiable in the cameras’ FoV (Figure 4.3: Difficult to read 
aircraft tail number for identification purposes). That considered, layout 2 is devised for cases where 
higher recognition accuracy is required. Figure 4.4 demonstrates the camera placements and orientations 
in the airport for layout 2. 
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Figure 4.3  View of a landing aircraft with a difficult-to-read tail number in layout 1 field of view 

Since all operations require a passage over connectors, camera layout 2 FoVs have a view of flight 
operations (either departure or arrival) on the ground level and can distinguish them based on the aircraft 
motion direction in the respective connector. 

Figure 4.4  Top: Camera deployment in layout 2; Bottom: Field of view in Camera A for a departure 
operation (left) and an arrival operation (right) on the taxiway-runway connector area 
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Camera layout 2 should be used for finding touch-and-go activities’ occurrences as a spinoff use. To do 
so, the tallied arrival operations at connector passages are subtracted from all landing aircraft operations 
that are seen at the end connectors (Cam A and D in Figure 4.4). Figure 8 demonstrates the Cam A FoV 
while observing a landing operation. Table 4.1 shows air traffic visual data details provided by each 
camera layout separately. 

Table 4.1 Visual data field provided by camera layout 1 and 2 
Visual data set field Layout 1 Layout 2 
Able to count all flight operations ✓ ✓ 
Able to distinguish departure operations from landing operations ✓ ✓ 
Able to count touch-and-go activities ✓ ✓ 
Able to capture aircraft tail number for departure and arrival operations ✓ ✓ 
Able to capture aircraft tail number for touch-and-go activities ✓ ✗ 
Able to distinguish touch-and-go activities from non-touch-and-go arrival 
operations ✗ ✓ 

 

4.2  Experimental Setup in Test Locations  

In this project, the dataset was collected by using low-priced commercial off-the-shelf cameras (GoPro 
Hero 8, GoPro Hero 3, and Fuji Film XT-30). These cameras were mounted on steel tripods (Figure 4.5). 
Several video capturing resolutions were tested: 4K linear, 4K wide, 2.7K (1.4x), 1080 (HD) (2x), XP+, 
and 1,760x3,120 (2x). According to the results, 1,080 video resolution with 30 frames per second and 2x 
zoom selected is optimum because it ensures enough image pixels and number of frames in an aircraft 
operation time window for aircraft operation detection and aircraft operation count.  

 

Figure 4.5  Data collection setup 
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Nonetheless, the rise in video resolution would assist us in the task of aircraft identification through the 
recognition of the aircraft tail number. The system evaluation section demonstrates the level that the 
increased video resolution influences the results of the aircraft identification in both camera layouts 
separately. 

We performed several data collection sessions at the discussed airport test locations to include a wide 
variety of video data in our datasets, including all possible variations. These variations are not limited to 
different weather/illumination conditions, other moving objects in the scene, different airport layouts, or 
different aircraft types.  

During the project time, the project lead visited all five test locations and conducted multiple data 
collection sessions at each general aviation airport. With the assistance of the student team and the airport 
operators, the project lead conducted 29 data collection sessions in all four seasons of the year. The 
following pictures show a few video frames of the camera FoVs as well as the equipment configuration 
and camera setup at some of the data collection sessions. 

 

 

Skypark 09-25-2020 

Skypark 10-14-2020 
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Brigham City Municipal Airport 10-28-2020 

Brigham City Municipal Airport 11-18-2020 

Brigham City Municipal Airport 11-19-2020 

Skypark 12-10-2020 
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Skypark 12-15-2020 

Spanish Fork Airport 12-23-2020 

Spanish Fork Airport 02-19-2021 
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Heber Valley Airport 06-03-2021 

Heber Valley Airport 06-04-2021 

Logan-Cache Airport 08-10-2021 

Figure 4.6  Sample screenshots from cameras’ fields of view during data collection sessions 
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In some cases, the small sizes of the aircraft tail numbers are even difficult for human eyes to recognize. 
Figure 4.6 demonstrates the various aircraft types and the different shapes of the associated tail numbers 
printed on the aircraft fuselage. The direct sunlight reflected from the aircraft body is another instance of 
a difficult-to-read aircraft tail number.  

The reflected sunlight from the aircraft body reduces the tail number reading possibility. Therefore, a 
polarizer filter can reduce the effect of solar radiation on the camera lens. In cases where the sun shines 
directly into the camera lens, an IR cut lens can lessen the effect of the input light into the camera lens. 

All data collection sessions are spread throughout different seasons of the year for a better generalization 
of the research product. From the beginning of the project, the project leader gathered the required data 
with a crew from Dr. Rashidi and Dr. Markovic’s lab. After performing each data collection, the video 
data are meticulously evaluated and processed with the developed algorithms (software).  

We performed several trials and errors in order to build the most current software platform and camera 
layout configuration. Among them are the video configurations and camera specifications, camera 
positions at the airports, and software debugging. The next section examines the system using the 
collected data from the assigned test locations (airports). 
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5. RESULTS  

In this section, we evaluate the designed system by using standard metrics. First, the accuracy of the 
camera layouts for capturing the aircraft operations is assessed. Next, we report the accuracy of the 
computer vision algorithms, including aircraft operation detection and tail number identification. This 
section also evaluates the accuracy of the camera layouts in capturing different aircraft operations.  

5.1  System Performance  

5.1.1  Aircraft Detection  

As illustrated in Table 5.1, the performance of the algorithm is tabulated for general aviation aircraft 
detection for each camera layout and flight operation status separately. Despite its rapid processing time 
with 42 FPS, tiny YOLO was not able to provide sufficient true positive detections in departure 
operations at both camera layouts and was removed from Table 5.1 for the rest of the algorithm analysis. 
The recall observed when using tiny YOLO is zero and 0.2 for departure operations at layout 1 and layout 
2, respectively. The lower value of the recalls (Table 5.1) for detecting aircraft in departure operations 
versus arrival operations is because of the complex background of the scene and occasionally partial 
occlusions of aircraft with long bushes in the runway shoulder area.  

Table 5.1  Aircraft detection accuracy 

Operation Method 
Camera Layout 1 Camera Layout 2 
#frame
s FPS precision recal

l 
#frame
s FPS precision recal

l 

Arrival 
Flights 

H
ref Haar 1352 32 0.98 0.71 493 29 0.82 0.57 

aar 1352 33 0.88 0.71 493 29 0.79 0.58 

SSD 1352 26 0.84 0.60 493 26 0.98 0.88 
YOLOv4 1352 4 0.97 0.89 493 4 1.00 0.96 

Departure 
Flights 

Haar 2451 31 0.88 0.38 1948 30 0.69 0.55 
ref Haar 2451 31 0.89 0.38 1948 29 0.85 0.45 
SSD 2451 27 0.57 0.16 1948 25 0.99 0.97 
YOLOv4 2451 4 0.99 0.73 1948 3 1.00 0.96 

 
In both camera layout 1 and camera layout 2, YOLOv4 had a better performance compared with Haar 
cascade and SSD (Table 5.1) regarding the precision and recall metrics. Figure 5.1 illustrates higher 
robustness of YOLOv4 in detection at various quartiles as well. Nevertheless, this algorithm falls behind 
its counterparts because the YOLOv4 processing rate is 3-4 FPS. 
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Figure 5.1  Average true positive detection rate per quartiles in layout 1 (left) and layout 2 (right) 

Among those detection algorithms that maintained a real-time processing time, Haar cascade 
outperformed the SSD in detection results for the first camera layout. As for 3,803 frames (extracted from 
59 flight operation time windows) examined for camera layout 1 and tabulated in Table 5.1, the Haar 
cascade algorithm attained 4-7 more FPS and higher precision and recall values compared with SSD. This 
increase in performance can be seen especially for departure operations, which are more difficult to 
detect. The developed refinement algorithm enhanced the Haar cascade classifier’s precision from 0.88 to 
0.98 for detections in arrival operations while maintaining the recall value. Figure 5.1 illustrates the 
average true positive detection values for all methods for each operation separately. Figure 5.1 shows the 
considerably higher true positive detection performance attained by the refined Haar cascade classifier 
compared with SSD for the entire flight operation’s time window in the first camera layout, with an 
almost 50% true positive detection performance at all of the operation time window quartiles. 

In the analysis of the camera layout 2, SSD is shown to be a more robust algorithm while considering the 
real-time processing factor. As tabulated in Table 5.1 for camera layout 2, it is true that the refined 
version of the Haar cascade classifier has an acceptable performance in detection considering both 
accuracy matrixes, recall, and precision. Nonetheless, SSD offers higher values of recall and precision for 
both of the departure operations and landing operations with 25 FPS processing time. 
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As illustrated in Figure 5.1 right, the refined version of the Haar cascade maintained a moderate true 
positive detection rate and detected the general aviation aircraft for more than 50% of the digital video 
frames during each operation; however, SSD excelled at this camera layout for better true positive 
detection rates. The SSD’s better performance resulted from a closer FoV in layout 2 for departure 
operations compared with the other layout. 

5.1.2  Operation Count and Classification 

Each camera layout was able to independently perform an acceptable operation recording because of their 
sufficient coverage of the scene from the determined location at the airfield. Each camera layout alone 
covered both departure and arrival operations during the video surveillance. The collected data have flight 
operations from different types of general aviation aircraft and various weather conditions (sunny, 
overcast, rainy, and snowy). Table 5.2 illustrates the mix of the flight operation captured by the two 
camera layouts during the data collection sessions. During the observation time (in-field data collection), 
the observed operations by the assigned student’s crew totaled 288 and 91 for camera layout 1 and camera 
layout 2, respectively (Table 5.2).  

Table 5.2  Camera layout operation mix during observation in data collection time 
 Camera Layout 1 Camera Layout 2 

# Observed 
Operations 

# Captured 
by Cameras 

# Detected 
by Software 

# Observed 
Operations 

# Captured 
by Cameras 

# Detected 
by Software 

Departure 79 79 76 52 52 52 
Landing* 209 207 201+1** 39 39 38 
Total 288 286 277 91 91 90 
 
It is shown in Table 5.3 that camera layout 1 offers camera FoV that captured 99.3% of operations (i.e., 
accuracy regarding FoV selection) in the airport environment. This accuracy is for capturing flight 
operations (i.e., departure operations and landing operations, including arrivals and touch-and-goes). 
Furthermore, the software detected 96.9% of the recorded flight operations in the video footage in layout 
1. In a similar fashion, the camera layout 2 system had 100% accuracy for camera FoV selection and 
95.8% accuracy for operation detection via our vision-based software. Figure 5.2 and Figure 5.3 display 
the AIVATS software output displayed on the video footage screen (layouts 1 and 2) for further 
illustration. 

Table 5.3  Accuracy of the operation count task during observation 
System Accuracy for Layout 1 Accuracy for Layout 2 
Camera FoV selection 99.3% 100% 
Software (automatic vision based) 96.9% 95.8% 
Camera + Software 96.2% 95.8% 

 
Table 5.3 illustrates that the AIVATS software performance is very high for the two operations’ count 
and operation-status distinguishing tasks. From 377 operations captured by cameras in airports, only 10 
false-negative detections and one misclassification (i.e., false-positive) have resulted from using the 
software application. 
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Figure 5.2  AIVATS software performance during (top image) and right after (bottom image) the aircraft 
operation in layout 1 

Figure 5.3  AIVATS software performance during (left image) and right after (right image) the aircraft 
operation in layout 2 
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5.1.3  Tail Number Detection and Recognition 

Both of the aircraft tail number detection algorithms showed comparable accuracies for finding the 
bounding box of the aircraft tail number in the video footage. It should be noted that the Haar Cascade 
classifier could detect the bounding boxes at a much faster speed by using its rejection/approval stages for 
finding the object of interest. On the other hand, TextBoxes had a minor superiority regarding the 
accuracy of the bounding box localization compared with the ground truths. As Figure 5.4 shows, the 
accuracy of both algorithms is high considering their average precision and recall value for video frames 
captured per operation time window. 

 

 

Figure 5.4  Tail number detection (localization) performance metrics. The blue and orange bars 
show the average precision and recall value of the tail number detection methods for 
video frames captured per operation time window. 

Figure 5.5 shows the average of the mean, minimum, and maximum OCR IoU score for the recognized 
characters of the aircraft tail numbers per operation using the found bounding boxes by means of Haar 
cascade and TextBoxe algorithms. 

The following figure demonstrates that the TextBoxes algorithm results in slightly more aligned bounding 
boxes to the spatial location of the aircraft tail numbers in the digital video frames. It is shown there is an 
8% difference between the mean OCR IoU scores of the two tail number detection methods. Also, the 
error bar of the Haar cascade model is extended more than the error bar of the TextBoxes. Nevertheless, 
the considerably larger dataset (i.e., SynthText) used for training purposes for the TextBoxes network is 
one of the main reasons for this difference in OCR IoU score. 
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Figure 5.5  OCR performance of the CRNN over the detected bounding boxes detected by the two tail 
number detection methods. The blue bars indicate the average of the mean OCR IoU score of 
the recognized tail numbers per aircraft operation. The lower end and upper end of the black 
vertical error bars show the average of the minimum and maximum OCR IoU score per aircraft 
operation, respectively. 

Table 5.4 summarizes the two layout accuracies for the aircraft identification task. While the configured 
software identified 64% of the total number of aircraft operations collected from layout 1 FoV, only about 
14% of the identification errors resulted from the software. Despite having a moderate accuracy 
difference for the task of operation count and operation status recognition compared with layout 1, camera 
layout 2 showed a better performance in aircraft tail number identification. 

The camera layout 2 results determine better identification accuracy. Only 5% of unidentified aircraft are 
identified because of software errors. Closer range of view and lower aircraft speed in the operation time 
window of the FoV can be considered the primary reasons for the enhanced identification accuracy in 
camera layout 2. The other factors are the visibility of the tail numbers (e.g., the imprinted tail number 
sizes). Moreover, they are sometimes cluttered and unclear. Furthermore, in about 6% of the cases, there 
was no imprinted tail number on the body of the operating aircraft (Figure 5.3). 

Table 5.4  Aircraft operation identification (fleet mix) accuracy of the system 
 Layout 1 Layout 2 
% (correctly) identified 64% 80% 

% unidentified 

Aircraft with no printed tail number 7% 6% 
Not visible (small, cluttered, unclear  
tail numbers) 15% 9% 

Software error 14% 5% 
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Figure 5.6  Aircraft with small and not imprinted tail numbers 
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6. CONCLUSIONS  

This paper presented an adaptive computer vision-based system for aircraft operation detection and tail 
number identification by processing the visual information of the airport cameras. The proposed system 
covers all airport operations through the camera system deployed at each end of the runway or the 
cameras deployed adjacent and oriented toward the entrance taxiways at airports. The field experiments 
demonstrated promising results regarding the detection of the aircraft, operation count, and identification 
of the tail numbers. The automatic transformation of the detected tail numbers into an editable format 
highly depends on the implemented OCR method. 

The proposed intelligent system uses a framework that leverages several video frames to detect the 
aircraft and its tail number during the flight operation time window. This approach avoided issues such as 
reading the difficult-to-read tail numbers because of the occlusion of the tail numbers by the aircraft wing 
or due to the spatial transformation of the tail number caused by aircraft maneuvers. With this approach, a 
high value for the average maximum tail number character recognition score was achieved when the 
system was tested for the recorded aircraft operations at five general aviation airports within the state of 
Utah. These airports are: 

1. Bountiful Airport  

2. Brigham City Municipal Airport  

3. Spanish Fork Airport 

4. Heber City Airport 

5. Logan-Cache Airport 

We also developed a multi-frame-based probabilistic OCR system to connect the per frame aircraft tail 
number recognitions to the FAA registration database for registered general aviation aircraft in the United 
States. This was done with two objectives. First, the developed system was needed in order to handle the 
possibly different number of recognized characters obtained from tail number recognition algorithms in 
consecutive digital video frames. The second objective was to enhance the accuracy of the system by 
completing the partially recognized tail numbers due to the errors raised by the recognition networks. 

The future work path for this research would be the fusion of the developed system with a secondary data 
source such as ADS-B. This data fusion would increase the accuracy of both systems. In this way, we can 
also have a better understanding of the percentage of the operations conducted by those aircraft not 
equipped with a transponder. Hybrid systems increase the accuracy of the individual systems and cover 
the limitations of each individual system. Also, this hybrid system can provide the airport authorities with 
more information if only one of the information sources is used. For example, some aircraft tail numbers 
are not readable by using vision-based systems, and an ADS-B system would solve the problem. 
Likewise, a vision-based system can recognize the identity of aircraft that do not have transponders. 

6.1  Challenges 

The proposed system uses digital cameras to record the required video frames for detection purposes. 
Many general aviation airports do not have the electricity infrastructure to provide the necessary power 
for executing the camera system. In order to overcome this challenge at these airports, electrical power 
can be provided by using solar-powered digital cameras. These cameras have recently become more 
easily accessible and can be installed at low costs. 
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Another challenge the proposed system might face is that it uses the visual information captured from the 
airfield under different weather and aircraft conditions. This could lead to misidentification of some of the 
aircraft operations at the airport. This matter is thoroughly discussed in the previous section. The 
discussed factors relate to the size of the tail numbers (if they are too small), the shape of the tail number 
(if it is abnormal or cluttered), the visibility of the tail number (if the used color is noticeable or if there is 
any imprinted tail number on the fuselage), and illumination and weather conditions (if it is too sunny or 
too dark). 

In order to solve the abovementioned challenges, we used preprocessing modules to improve the quality 
of the aircraft tail number image. The employed preprocessing modules are designed to help the system 
identify the difficult-to-read aircraft tail numbers. In fact, these modules improve the cluttered images so 
that the new image looks more readable compared with the original image captured by the cameras. It 
should be noted that these techniques are only useful when the original image has a minimum quality to 
retrieve the lost information. Otherwise, other approaches should be taken. That is why a multi-frame-
based approach is beneficial. It is almost impossible possible to lose all visual information of an aircraft 
tail number in several consecutive video frames (around 100) compared with the single-frame-based 
detection approach used in some intelligent systems. 

6.2  Limitations 

It is important to note that the developed computer vision-based aircraft operations 
detection/identification has the drawbacks of other vision-based systems. Therefore, any extreme weather 
condition that decreases the visibility in the camera field of view would negatively affect all vision-based 
systems. Regarding nighttime operation, we suggest the use of night vision cameras for those airports 
with limited lighting resources in their airfield. The considerably lower rate of nighttime aircraft activities 
at non-towered general aviation airports could also help the system perform at a high performance at 
small general aviation airports with no runway lighting. 

By testing it for the collected data at different airports, the developed system has shown to be robust as it 
extracted the tail number image in all aircraft operations for those aircraft that had a tail number readable 
by human eyes. It should be considered that the inaccuracy regarding tail number recognition is related to 
the performance of the optical character recognition algorithm. The developed system can be used at all 
types of airports, from small backcountry airstrips to airports that have multiple runways and complex 
taxiways. In the latter case, the user should take careful consideration in order to avoid extra counting by 
the system. Double counting the aircraft operations is possible if in a multi-runway airport where two 
runways begin in close proximity to each other.  

6.3 Recommendations 

For airports with very long runways, the operator can use an extra camera near the connector where 
intersection departure is predicted. It is noteworthy that most general aviation airports would not need 
such cameras because the abovementioned mid-entrance taxiways (connectors as shown in Figure 6.1) 
are typically used for the purpose of taxiing arrival aircraft operations. Those arrival operations are 
already captured by the camera at the end of the runway. 

Moreover, there is a command named “No intersection departure,” which makes the operations in an 
airport more organized. Hence, it would be easier to control the airport operations for radio stations as 
well. During our data collection sessions, we did not observe any intersection departure at the test location 
(general aviation) airports. 
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Figure 6.1  A 2D aerial view of the camera layout at an airport (Tooele Valley Airport) 

The proposed system could be advantageous for several applications. Those applications are not limited 
to counting the number and volume of the operations for planning purposes only. One of the important 
applications is the system’s use for automating the billing association process for fees related to landing 
operations. This application was not possible by the previous vision-based aircraft identification methods 
because there is no aircraft operation classification module (classifying the operation into departure 
operations and landing operations) devised in those methods. The proposed rapid tail number detection 
system can also be used for larger aircraft, while the previously proposed approaches had shortcomings 
for recognizing small general aviation aircraft. This increases the generalizability of the proposed system. 

Regarding the tail number detection algorithm, it is essential to mention that the rapid detector can be 
trained to detect all prefixes for any country. For the current study, we only trained the model for 
detecting the letter “N,” which is the prefix for aircraft registered in the United States, because our 
collected data only included U.S. general aviation aircraft. However, for international airports, we suggest 
using the deep tail number detector since it is possible to observe airplanes from various nationalities and, 
as a result, with various prefixes. 

Finally, in this report, two camera layouts are proposed to record video footage from the airport. Camera 
layout 1 records the two ends of the runways. This camera layout is beneficial for cases where there is a 
cost limitation, and counting numbers is more important than the recognition of the tail numbers. In cases 
where there is a more available budget for purchasing cameras, camera layout 2 would be helpful. In this 
layout, cameras are placed adjacent to the entrance taxiways and have a closer range of view, thereby 
resulting in higher accuracy for detecting and recognizing the aircraft tail number. 
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